Navier-Stokes Computations on Commodity Computers
By

Veer N. Vatsa
NASA Langley Research Center, Hampton, VA
v.n.vatsa@larc.nasa.gov

And

Thomas R. Faulkner
MRJ Technology Solutions, Moffett Field, CA

faulkner@nas.nasa.gov

Abstract

In this paper we discuss and demonstrate the feasibility of solving high-fidelity, nonlinear compu-
tational fluid dynamics (CFD) problems of practical interest on commodity machines, namely
Pentium Pro PC’s. Such calculations have now become possible due to the progress in computa-
tional power and memory of the off-the-shelf commodity computers, along with the growth in
bandwidth and communication speeds of networks. A widely used CFD code known as TLNS3D,
which was developed originally on large shared memory computers was selected for this effort.
This code has recently been ported to massively parallel processor (MPP) type machines, where
natural partitioning along grid blocks is adopted in which one or more blocks are distributed to
each of the available processors. In this paper, a similar approach is adapted to port this code to a
cluster of Pentium Pro computers. The message passing among the processors is accomplished
through the use of standard message passing interface (MPI) libraries. Scaling studies indicate
fairly high level of parallelism on such clusters of commodity machines, thus making solutions to
Navier-Stokes equations for practical problems more affordable.

Introduction

Most of the effort in the field of computational fluid dynamics (CFD) in past three decades has
been focussed on developing codes for the largest and most powerful computers or the so called
super-computers. This trend in computing started with the advent of the CDC 7600 computer in
1969. The next stage in development focussed on vector processors, and first in this series were
the ILLIAC-IV and CDC STAR 100 computers of the early seventies. Programming on these
computers was extremely tedious, especially for obtaining optimal vector performance for com-
plex implicit algorithms. Advent of Cray computers, starting with Cray 1 in 1976, was a boon to
researchers in the CFD applications, because of its large memory, fast speed (12.5 Mflops), and
easier programming environment. The trend for using the most powerful shared memory comput-
ers (e.g. Cray C-90) for scientific computing, especially large scale computations, is still popular
with the CFD research community, due to ease of programming and availability of large memo-
ries.

However, current trends in computer hardware are dictating a gradual shift toward the use of mas-
sively parallel processing (MPP) machines and workstation clusters for scientific computing. This
is evident from the sudden growth in technical meetings and workshops devoted to code parallel-
ization related activities. For example, a quick glance at the proceedings of one such workshop
(ref. 1) clearly indicates that significant effort is being devoted to porting existing CFD codes to
distributed computing environments. Most of these efforts can be classified into two broad catego-
ries: the first one concentrating on modifying (or seeking) algorithms and software more suited
for parallelization (refs. 2-4); the second one focussing on porting existing, well established large
computer codes to the distributed computing environment (refs. 5-8). We are pursuing the latter
approach to benchmark the performance of an existing Navier-Stokes code on the MPP’s and
clusters of commodity computers.

Computation on commodity computers: A new Paradigm

The development of parallel computer codes and the availability of the new class of powerful
commodity (personal) computers with larger memories is creating a paradigm shift in the field of
CFD. In the past, only large and well-funded organizations could afford to purchase the Cray class
Vector super-computers or the high-end MPP computers, such as the distributed memory I1BM
SP-2 systems, and the shared memory multiprocessor (SMP) SGI/Cray 02000 systems, which
can easily cost several million dollars. However, it is now possible to assemble a reasonable size
cluster of powerful PC’s complete with a fast and dedicated network under $100,000. Such devel-
opments open the door for performing non-linear, high-fidelity CFD computations at smaller
research groups in universities and small businesses, as well as in countries where super-comput-
ers are unavailable due to variety of reasons. We plan to demonstrate the application of the widely
used Navier-Stokes code, TLNS3D (ref. 9), on such a cluster of PC’s. In this paper, we would dis-
cuss the pertinent issues involved in the parallelization of this code for computing on clusters of
machines.

Parallelization Implementation Strategies

An engineering approach outlined by Vatsa and Wedan, and Vatsa and Hammond (refs. 10-11) is
used here for parallelizing the TLNS3D code so that significant benefits of parallelization could
be realized with a minimum of code changes. We take advantage of the existing block structure of
the code to partition the problem for achieving good load balance and parallelism. A coarse-grain
parallelization approach is used where multiple blocks can be assigned to a compute node but a
given block cannot be split across nodes. Each compute node can have from one block (maximum
parallelization) to all blocks (no parallelization) assigned to it. Thus, the maximum number of
compute nodes is equal to the total number of grid blocks for a given problem. Each compute
node stores the complete data for the blocks assigned to it. If the grid blocks that share a common
interface are assigned to different nodes, then the interface data must be transferred by using
‘SEND’ and ‘RECEIVE’ calls to the underlying message passing libraries.

A master node serves as the host for sending and receiving global data to and from the compute
nodes. After the input data have been read by the master node and a rank for each compute node

has been determined, the global input data and block-specific geometric data are sent to the appro-
priate compute nodes. The compute nodes perform identical instructions on the assigned blocks.
Whenever the logic calls for an exchange of data from other nodes, this exchange is accomplished
through the use of ‘SEND’ and ‘RECEIVE’ calls by the appropriate nodes via node-to-node com-
munications, thus bypassing the master node completely for such exchanges. We have imple-
mented both synchronous (blocking) and asynchronous (non-blocking) modes of communications
among processors supported by the MPI libraries (ref. 12), with asynchronous communication
mode being preferred as the number of compute nodes is increased.

Load Balancing

Load balancing is critical to obtain good performance for parallel computing. Although perfect
load balance is very difficult to achieve for practical problems with different dimensions for vari-
ous grid blocks, it is still possible to achieve a reasonable level of load balance for multiblock
codes. We make use of a simple, static load balancing algorithm that attempts to equalize the total
number of grid points assigned to each compute node without further subdivision of the grid
blocks, as described in refs. 10-11.

In real-life CFD problems, a wide variation exists in grid sizes across blocks, which can limit the
benefits of distributed computing because of load-balancing considerations for computer codes
that employ only coarse-grain parallelism at the block level similar to the strategy employed here.
Before running a test case, we analyze the suitability of a problem for distributed computing from
the load-balancing viewpoint. If it is determined that a good load balance is not feasible, we split
the larger blocks into smaller ones as a pre-processor step. The usefulness of this approach was
demonstrated in ref. 11, where a 19-block grid suitable for running only on 3 compute nodes was
split into a 26-block grid, which produced a good load balance on 16 compute nodes. We can get
even higher level of parallelism for this problem by splitting the (larger) blocks further. The esti-
mated ideal speedups for this case (neglecting communications overhead) for 19, 26 and 71
blocks are compared in Fig. 1. Note that starting from a maximum of 3 speedup (for 19 blocks),
one can expect to get a speedup of almost 48 for the equivalent 71 block problem. Such an
approach makes it feasible to improve the parallelizability of uneven-sized grid problems with
only minor rearrangement of grids, through judicious use of grid splitting. The actual computa-
tional results for this problem are presented in a later section of the paper.

Computing Platforms

We have chosen two test-beds in this paper to compare the performance of the TLNS3D code for
the emerging class of parallel computers. The first one is a state-of-art shared memory, multipro-
cessor (SMP) machine, namely a 64 CPU SGI/Cray Origin 2000 computer consisting of 195 MHz
R10000 MIPS processors with a built-in MPI 3.0 library for message passing, costing approxi-
mately $45,000 per processor. The main reason for selecting this platform was to provide baseline
computational results, since an MPI version of the TLNS3D Navier-Stokes code was already
operational on this system. These calculations and timings could be used for assessing the perfor-
mance of this code on other systems. The second computer platform chosen for this work is a 36-
node cluster of 128 MB (per processor) Pentium Pro PC’s connected to a fast dedicated Ethernet

network. The freely available MPICH 1.1.0 library is used for message passing among nodes. The
cost per processor (including network interconnect) is approximately $2,000 for this setup. In
order to quantify the communication overheads and its effect on parallelizability, we instrumented
the code to generate statistics on message passing activities. Only minor code modifications were
required to run it on the PC cluster. Basically, these changes were related to optimization levels,
since some of the subroutines in the original code produced erroneous results with higher levels of
optimization; these offending subroutines were compiled with lowest optimization levels. This
type of glitches are not too uncommon in the early stages of compiler development, and our feel-
ing is that the Fortran compilers for PC’s are lagging behind the compilers available for scientific
workstations and super-computers. Thus we can expect even better performance from PC'’s in
future from the compiler development side.

Results and Discussion

The distributed (parallel) version of the Navier-Stokes code TLNS3D was used to compute the
viscous flow over an isolated wing, known as the ONERA M6 wing as the first test case for this
study. A 48-block grid obtained by splitting a single-block 289x65x49 grid was used for this
case. The block sizes are identical for this test case, so that load-balance is not an issue, as long as
the number of compute nodes is selected from factors of 48. The total wall time to compute this
case are shown in Fig. 2 for both systems. On an average, the Pentiums take approximately 5
times longer to complete the calculations compared to 02000 system, and the total computation
time is under 2 hours for 12 or more nodes.

We now examine the statistics on message passing activities in order to get a quantitative measure
of communication overhead. These results are shown in Fig. 3. Note that for the SGI 02000 sys-
tem, the communication overhead peaks at about 6%, whereas for the Pentium Pro PC's, it is
steadily increasing with the number of nodes, and is about 28% for 24 compute nodes, and there-
fore is expected to have an adverse affect on the speedups for the Pentiums. It might be worth
mentioning that communication overheads can make parallel computing impractical on standard
(non-dedicated) general purpose networks. We conducted an in-house exercise, using 6 SGI
R10000 workstations, and found dismal levels of performance due to the communication bottle-
neck on the network. Based on our experience, a fast dedicated node-to-node network is of utmost
importance for achieving high levels of parallelism from computer clusters.

The actual speedups in wall time (over single node computations) are shown in Fig. 4 along with
the estimated linear speedups. The single node computational time used for determining these
speedups was obtained by running the identical problem on a single node with the serial (non-par-
allel) version of the code to eliminate any communication and parallelization related overheads.
The ideal speedup based solely on the grid point distribution on the nodes is expected to be linear.
The present results indicate that approximately 72% parallel efficiency has been achieved on 24
Pentium compute nodes, which is somewhat lower than the efficiency on 02000 system, but is
considered quite good considering the high communication overhead (see Fig. 3) associated with
the Pentium cluster. The more important observation drawn from this study is the demonstration
of the feasibility of performing Navier-Stokes computations on commodity computers (Pentium
Pro PC’s) for aerodynamic problems of interest.

The final test case chosen for this study is a generic high speed civil transport (HSCT) configura-
tion, discussed earlier in the load balancing section, and shown schematically in Fig. 5. The com-
putations were performed on the 71-block grid due to its potential for high degree of parallelism.
The convergence history for lift coefficient for this case is shown in Fig. 6. The computations
were performed by employing the Full Multigrid with grid sequencing, with 50-50-300 iterations
on the coarse, medium and fine grids. Based on this figure, it is clear that the lift coefficient is well
converged. The speedup in wall time on the SGI 02000 and Pentium Pro computers with increas-
ing number of compute nodes for these computations are shown in Fig. 7. The estimated ideal
speedup based solely on computational loads is also plotted in this figure for comparison pur-
poses. The actual speedup for the O2000 system traces the ideal speedup very closely. Although
the speedup for Pentium cluster is somewhat lower for larger number of compute nodes, it is still
quite good and results in a monotonic decrease in wall time with increasing number of nodes. The
actual wall times to obtain the converged solutions on this system are shown in the next figure
(Fig. 8). It is observed from this figure that one can obtain a converged solution to the Navier-
Stokes equations for a complex and realistic configurations on a cluster of 32 Pentium Pros in
approximately 2.5 hours of wall time, which is quite remarkable

The significance of such computations becomes even more apparent when one compares the rela-
tive costs of these systems. Using published data for the cost of purchasing these systems, it is
estimated that the average cost/performance ratio, measured as dollars per million floating point
operations (MFLOPS) for the SGI 02000 system for this case is $1000, and for the Pentium Pro
PC-based system the cost is $273. Even more important is the fact that the total cost of the 02000
system used in this study was $2.9 million, whereas the cost of the PC cluster was $72,000. As
mentioned earlier in the paper, the PC cluster offers a more affordable compute platform, albeit
somewhat slower.

Concluding Remarks

A widely used Navier-Stokes code has been ported to run efficiently on a cluster of commodity
Pentium Pro computers. The code has been applied to solve viscous turbulent flows over a config-
uration of practical interest. Good scalability has been demonstrated for fixed sized problems for
up to 24 nodes. The results presented in the paper demonstrate the feasibility of solving Navier-
Stokes equations for practical CFD problems on clusters of commodity computers, thus opening
up the doors to smaller research groups for non-linear, high-fidelity computations with limited
budgets. The final paper would include results for essentially a full aircraft configuration consist-
ing of 71 unequal sized blocks to demonstrate this methodology for solving viscous, turbulent
flows over complex aircraft configurations.

8.

9.

REFERENCES

. Feiereisen, W.J. (Editor): NASA CD Conference Publication 20011, proceedings of

Computational Aerosciences Workshop 96, NASA Ames Research Center, May 1997.

. DiNucci, D.C.: “Cooperative Data Sharing: An Architecture-Independent Interface for

Implementing Parallel CFD Applications.” NASA CP 20011, May 1997, pp. 111-116.

. Roe, K., and Mehrotra, P.: “Evaluation of High Performance Fortran for CAS Applications.”

NASA CP 20011, May 1997, pp. 131-132.

. Naik, V.K.; Coleman, D.W.; Konura, R.B.; and Moreira, J.E.: “DRMS: An Application

Oriented Management Environment for Dynamic Control and Scheduling of Resources on
IBM-SP2.” NASA CP 20011, May 1997, pp. 157-162.

. Krishnan, R.K.: “An Efficient Parallelization Procedure for Multi-Block CFD Codes.”

NASA CP 20011, May 1997, pp. 29-34.

. Van der Wijngaart; and Yarrow, M.: “RANS-MP: Portable Parallel Navier-Stokes Solver.”

NASA CP 20011, May 1997, pp. 145-150.

. Reuther, J.; Rimlinger, M.J.; Alonso, J.J.; and Jameson, A.: “Rapid Cycle Aerodynamic Shape

Optimization of Complete Aircraft Configurations via an Adjoint Formulation and Parallel
Computing.” NASA CP 20011, May 1997, pp. 167-172.

Bhat, M.K.: “Development of an unstructured Grid Fluids Module for ENSAERO in a
Parallel Environment.” NASA CP 20011, May 1997, pp. 179-184.

Vatsa, V. N.; Sanetrik, M. D.; and Parlette, E. B.: “Development of a Flexible and Efficient
Multigrid-Based Multiblock Flow Solver.” AIAA Paper No. 93-0677, January 1993.

10. Vatsa, V.N.; and Wedan, B.W.: “Parallelization of a Multiblock Flow Code: An Engineering

Approach.” To appear in Computer and Fluids.

11. Vatsa, V.N.; and Hammond, D.P.: “Viscous Flow Computations for Complex Geometries

on Parallel Computers.” Paper presented at the “4th NASA National Symposium on
Large-Scale Analysis and Design on High-Performance Computers and Workstations,”
Williamsburg, Virginia, Oct. 1997.

12. “MPI: A Message-Passing Interface Standard.” MPI Forum, University of Tennessee,

Knoxville, TN, May 1994.

64.0 [

; < 19 blocks]
56.0 - A 26 blocks 3
f O 71 blocks]
48.0 © @
; QED |
40.0 (@D} 3
F [QUIIILD) i
F QD]
32.0 - @m B
F o i
24.0 | D 1

16.0 -

Estimated Single Node/Total Wall Time

K \\\\\\\\\‘\\\\\\\‘\\\\\\\‘\\\\\\\‘\\\\\\\‘\\\\\\\‘\\\\\\\:
0.0 80 16,0 240 320 40.0 480 56.0 64.0
Number of Compute Nodes

Fig. 1. Estimated ideal speed gains for unequal size block grid configuration

12.0

10.0 A SGI QZOOO
O Pentium Pros

©
o
T
|

6.0 []

Total Wall Time (hours)

i o]
2.0 A O 1

A O |
OO n n n n 1 n n n 1 n 4 n n 1 \A n n n 1 n n n A]

0.0 5.0 10.0 15.0 20.0 25.0
Number of Compute Nodes

Fig. 2: Comparison of total computational time for ONERA M6 wing

400

A SGI 02000
O Pentium Pros
& 300 F]
ko] O]
© i
g O
g
o 4
O]
@ 200 F ©]
2]
g
£ o
5 100} ©O y
o]
ALD A A A A A
A]
0.0 Q P B U N
0.0 5.0 10.0 15.0 20.0 25.0

Number of Compute Nodes

Fig. 3: Communication overhead for the ONERA M6 wing computations

25.0
——— Linear speedup Al
A SGI 02000
g 200 L O Pentium Pros]
=]
T o |
= |
S 150 | 1
(o] 4
'_
Ko}
£ o
=]
% 10.0 + O -
S]
z
B o ,
£
»n 50 r R
0.0 Il Il Il Il
0.0 5.0 10.0 15.0 20.0 25.0

Number of Compute Nodes

Fig. 4. Speedup comparisons for parallel computing for ONERA M6 wing

Normalized Lift Coefficient

Fig. 5: Schematic of a generic High Speed Civil Transport (HSCT)

1.500
— SGI 02000
---- Pentium Pros
1.000 b
0.500 : : : : : ‘ : ‘ :
0.0 100.0 200.0 300.0 400.0 500.0

Iterations

Fig. 6: Lift convergence history for High Speed Civil Transport

Estimated Single Node/Total Wall Time

320 —
"""""" Ideal speedup]
A SGI 02000 A
O IBM Pentiums]
240 .
SN]
d
16.0 - o) .
i A
o)
Oo @ P P M n P P n |- P P M n P P P
0.0 8.0 16.0 24.0 32.0
Number of Compute Nodes
Fig. 7: Wall time speedups for HSCT computations
10.0
8.0 G—oOIBM Pentiums

Total Wall Time (hours)

0.0

8.0 16.0

24.0

Number of Compute Nodes

Fig. 8: Physical wall times for HSCT computations

32.0

